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A new code to calculate differential and integral cross sections for inelastic scattering is 
described. The system is a spherically symmetric particle scattering from a E-state diatomic 
molecule. Space-fixed, total angular momentum, transition matrices are required as input. .4t 
least two methods are provided for computing each cross section. Results for Ne + HD are 
presented at 31.5 meV total energy. Timing information shows that, when a large number 
of total angular momenta are required for convergence, only one method is practical for 
computing the cross sections. 0 1988 Academic Press, inc. 

I. INTRODUCTION 

Calculating cross sections is an important part of any scattering calculation since 
cross section are the only way to compare scattering theory to observations. A code 
has been developed that calculates five cross sections, in at least two ways, for 
inelastic scattering of a spherically symmetric particle by a C-state di~torn~~ 
molecule. The live cross sections include the state-to-state, degeneracy averaged, 
and total differential cross sections along with the state-to-state, and degeneracy 
averaged integral cross sections. Space-fixed, total angular momentum tra~siti~~ 
matrices are required as input. 

Results for Ne + HD scattering are presented. Timing information compa~~g 
different methods shows that for large total angular momentum some methods are 
very time consuming. In particular, for degeneracy averaged differential moss 
sections only one method out of the four is fast enough for practical use. 

This paper is organized into four main sections. The collision system is describe 
and the solution method is briefly reviewed in Section II. In Section III the cross 
sections and the methods used to calculate them are specified. There are five cross 
sections in the code, three differential and two integral cross sections. The t 
differential cross sections, state-to-state, degeneracy averaged, and total, are 
lirst. State-to-state and degeneracy averaged integral cross sections 
Section IV gives results for a neon atom scattering with a hydrogen-de~teri~m 
diatom. Included in this section is timing information showing that some rnet~l~d$ 
are much faster than others. 
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16 ARCHER AND PARKER 

II. THE COLLISION SYSTEM 

Cross sections calculated by the code are for a rotating, vibrating diatomic 
molecule in a Z-electronic state scattering nonreactively with a structureless 
particle. The scattering theory equations will be set up assuming that the incident 
particle has an arbitrary incident direction as done by Curtiss [l-3] and 
coworkers. Notation similar to Arthurs and Dalgarno [4] will be used and for 
most cross sections the incident structureless particle is assumed to be traveling in 
the +z direction as Arthurs and Dalgarno assumed. The structureless particle is 
labeled as A, and the atoms in the diatomic molecule are designated B and C. The 
vector from B to C is R, while the vector from the center-of-mass of BC to A is r. A 
space-fixed coordinate system is centered at the center-of-mass of the collision 
system. The orientation of A is given by 9, = (e,., 4,) and 52, = (0,, dR) gives the 
orientation of BC. , 

The time independent Schrodinger equation for the system in the center-of-mass 
frame is 

(E-A) @rt!=O 
VJ~J ’ 

where E is the total energy. The Hamiltonian (in CGS units) is given by 

(1) 

-fi* 1 a2 -2 
fi= --~r+fiA,,+ 

2p r ar 3 + f’(r, R Y). (2) 

V(r, R, y) designates the system interaction potential where y is the angle between R 
and r. The orbital angular momentum operator for the atom, relative to the 
molecule, is 8. Orbital wavefunctions of the atom, which are eigenfunctions of 8’ 
and ,,$$, are the spherical harmonics Y,,(Q2,). All spherical harmonics in this paper 
use the Condon-Shortley phase convention [5]. 

The isolated molecule Hamiltonian is given by 

llBC = 42 i a2 
--3R++ 
+BC R aR 2p’2R + VBC@), 

BC 

where 2 is the rotational angular momentum operator and V,,(R) is the internal 
potential. Rotational wavefunctions for the molecule, eigenfunctions of $2 and $=, 
are the spherical harmonics Yjmj(BR). The molecule reduced mass is 

(4) 

and the system reduced mass is 

P= 
mAmBC 

mA + mBC 
(3 
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The free molecule Schrodinger equation is 

where the eVj is the internal energy of the vibrating rotating molecule and x,- is the 
vibrational wavefunction. 

The orbital and rotational angular momentum operators can be added to get the 
total angular momentum operator, I= 2 + 8, which by the Clebsch-Gor 
theorem has the coupled angular momentum eigenfunctions 

Total angular momentum eigenfunctions of the time independent Scbro 
equation can then be constructed by 

where G(r) are the radial channel wavefunctions. The radial wavefunction has the 
boundary conditions 

G$!,,(r) -xi70 

G:?,,(r) r--+001 kvT?J2{ 6,,, Sj, 6,,, exp[ - i(k,r - h/2)] 

- F’(v’j’Z’I vjl) exp[i(k,:isr - /‘n/2)] > (9) 

which defines the scattering matrix s”. The wavenumber, which depends on v a. 
is given by 

k,= [$ (E-r,ili:i. 

In Eq. (9) and throughout the rest of the paper, a prime on a quantity means 
that this is the quantity after the collision. Unprimed quantities are before tbe 
collision. For example, j and j’ are the molecular rotational quantum ~~rnb~~ 
before and after the collision. 

Notice that the incoming wavevector, k,, which is in the direction of the incom- 
ing structureless particle, is in some arbitrary direction and not necessarily along 
the space-fixed z-axis. The complete wavefunction is a superposition of the total 
angular momentum eigenfunctions 

dj$,~=2~k,i~/~ c i”‘C(jlJ;mj,M-mj,M) YF,_,(Q,) !PfMwi(r,R). (11) 
JMI 
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The incident momentum has the direction Q2k and the outgoing direction, which is 
parallel to the final momentum in the asymptotic limit, is Ok. The asymptotic 
condition on the wavefunction is the usual incoming plane wave and an outgoing 
spherical wave (denoted by the + on the wavefunction) 

@(rt)- exp(ikVj.r) x,(R) Y,,(Q,) + 1 exp(ikVy,r) ~-‘(k~~k,~,)-“~ 
“J”, r  + co 

vym; 

X f(Vlj’m,l+ V!mjI Qk, QK) yj’m~(aR) Xdjf(RL (12) 

where the scattering amplitude, S, is defined as in Ref. [3] with respect to the 
prefactors. For example, if p is the scattering amplitude from Pack [6], then 

9- = (kjkj.)-“2J: (13) 

The scattering amplitude is defined by the boundary condition Eq. (12) and is given 
by 

f(vlj’milcvjmj152,,52h)=2~ c i’-“+‘C(jZJ;mj,M-mj,M) 
JMN ’ 

x C(j’Z’J; mi, M-m,!, M) Y&,(Q,) 

XY ,s,Mpm;(Q~) P(v’j’l I vjl), (14) 

where the transition matrix, r-‘, elements are defined as 

P(dj’Z’ / vjl) = 6,,, Sj, ii,,,- P(vy’Z 1 vjl). (15) 

The scattering amplitude angular dependence is determined by the incoming, Q,, 
and outgoing, Szh, direction of the structureless particle. In most cases the incoming 
particle will be restricted so that it is travelling in the +z direction. This requires 
that 8, = 0 which in turn requires that 

FL&u = cw+ 1)/47w2 4-l,,o. (16) 

Substituting this result into Eq. (14) gives the usual scattering amplitude 

f(v’j’mjt vjmjIQ~)=n”2 c i’-“+‘(2Z+ l)““C(jZJ;mj, 0, mj) 
JiI ’ 

x C(j’Z’J; mj’, mj-mi, m,) Y,,,,-,;(sZL) P(vlj’Z’l vjZ), (17) 

where the transition matrix is not affected. 

III. Cross SECTIONS 

This section describes the methods that the code uses in calculating the available 
cross sections. At least two methods are provided for each cross section so that the 



INELASTIC SCATTERING CROSS SECTIONS 19 

methods can be checked against each other. The code currently computes five 
different multichannel cross sections. The differential cross sections included are the 
state-to-state, degeneracy averaged, and total cross sections. Also included are t 
state-to-state and degeneracy averaged integral cross sections. The various cross 
sections will be described in the order given above. 

All systems allow parity decoupling and many allow rotational dec ing. 
Rotational decoupling occurs only when the diatom is homonuclear, requi the 
even and odd j states to be uncoupled. Parity decoupling requires that 9 i 1 +j and 
J + 1’ + j’ both be even or odd. Elements of ‘r=’ that do not meet the 
requirement are zero and are not summed over when making the cross sections. 

As mentioned earlier, the incident structureless particle can have a velocity off the 
z-axis. This allows comparison to experiments by calculating the state-to-state dif- 
ferential cross section for a range of off-axis incident velocities and then avera~~~~ 
over them. The result should compare favorably with actual beams. An off-axis 
incident velocity has only been provided in state-to-state differential and integral 
cross sections by the scattering amplitude method. All other methods and cross 
sections assume that the structureless particle is incident in the +z direction. 

A. The State-to-State DifSerential Crnss Section 

The state-to-state differential cross section is defined as 

I(vlj’mjt vjmiIQk, ak)=k,2/f(v;l’m;~vjmj152,, &)I”. (18) 

This cross section will be computed by expanding either the scattering arnpl~~~d~ or 
the cross section in Legendre polynomials. These two methods will be referre 
the scattering amplitude method and the Clebsck-Gordan method, respe~ti~~~~. 

1. The Scattering Amplitude Method 

The scattering amplitude method computes the state-to-state differential cross 
section by expanding the scattering amplitude in Legendre polynomials. ~ewr~t~~~ 
Eq. (14) as an expansion in spherical harmonics of the scattering arn~~it~de gives 

where the expansion coefficients are 

a,, = a;$$,(Q,) 

=2nf f i’-““C(jlJ; mj, M-m,, M) C(j’l’J; rnj, 
J=O I=0 

x Y:M+$2k) TJ(v’j’l’ 1 vjl). (20) 
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Using Rose [7, Eq. (4.31)], the spherical harmonic in Eq. (20) can be expressed as 

Y,T,-mj(a,)= (2n)9 - 1) M-~~;li-“(~~~ 0,) exp[i(mj- M) d,], (21) 

where PpPM(cos 0,) is a normalized associated Legendre polynomial with the 
Condon-Shortley phase convention [S]. Substituting Eq. (21) into Eq. (20), a,, can 
be separated into its real part 

a,K=(271)1/2(-1)M--,(_l)i+j’+~’ f ‘c (-1)‘-2J 
J=O /=/J-j/ 

x C(Zlj’J; M-m;, rni, M) C(ZjJ; M-mj, mj, M) S;“,-“(cos 8,) 

x {cos[(Z-Z’+ l)z/2](cos[(M-mj) q5?] T~(v’j’Z’IvjZ) 

+sin[(M-mj)d,.] Tf(v’j’Z’IvjZ)) 

-sin[(Z-Z’+ l)n/2](cos[(M-mj) tj,.] T~(v’j’Z’Ivjl) 

- sin[(M-m,) qSr] TJR(v’j’Z’I vjl))} 

and into its imaginary part 

(224 

~,~=(27C)1/2(-1)M~mj(-l)i+i’+~’ J;o,zYj, (-l)l-2J 

x C(Z’j’J; M-m;, mjl, M) C(Zj& M-mj, mj, M) P’;“jeM(cos 0,) 

x (cos[(Z-1’+ l)z/2](cos[(M-mj)@,] T{(v’j’Z’lvjZ) 

- sin[(M-mj) 4,.] TJ,(v’j’Z’l vjl)) 

+ sin[(Z- I’+ l)n/2](cos[(M-mj) q5,] Ti(v’j’Z’l vjl) 

+sin[(M-mj) d,.] T[(v’j’Z’l vjl))}, (22b) 

where the triangle rule is used to get the limits on the sum over 1. The real and 
imaginary elements of 7” are Ti and T,. J The Clebsch-Gordan coefficients are 
computed using the algorithm of Schulten and Gordon [S] which is most efficient 
when the fastest varying quantum number is in the first position. Therefore, 
Rose [7, Eq. (3.16b)] has been used to manipulate the Clebsch-Gordan coefficients 
so that the Z and Z’quantum numbers are in the first positions. In the first 
Clebsch-Gordan coefficient I’ was put into the first position because the code 
actually computes a,, by varying I’ the fastest. This allows the code to read each 7” 
only once when computing the scattering amplitudes. 

Reducing the spherical harmonic in the scattering amplitude gives a real part 

f,(vlj’mi c vjmjjQ,, Szk) = (27z-1/2 i f ~f?-“~(cos Q;) 
&f--J [‘CO 

x {al;cos[(M-mj’)&]-a,;sin[(M-m;)&]} 

Wa) 
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and an imaginary part 

fI(vljfmi +- vjmjIQk,!&)= (2~)~“~ M~~J,~oP~-nj(c~s 6:) 

x (~,~sin[(M-m,i)~:]/+a,;cos[(M-m,r)~:1). 

1233) 

The code computes the real and imaginary parts of the scattering amplitude from 
Eqs. (22) and (23). The state-to-state differential cross section is then computed 
from Eq. (18). 

In the expressions for a,, the sum over J is from 0 to co. Since such a sum cannot 
be carried out in practice, it must be truncated at some J,,, such that the series is 
converged to some arbitrary desired accuracy. By using the triangle rules from the 
Clebsch-Gordan coefficients in a,, the sum over I’ can be restricted to go from 0 to 
J,,, + j’. Similarly, the sum over I goes from 0 to J,,, + j. 

Usually the incident structureless particle is retricted to the travel in the $2 
direction allowing Eq. (21) to be replaced by Eq. (16). The delta function reduces 
Eq. (23) to 

f(vlj'mi t vjm, 1 i2;) = (2~)~~‘~ exp[i(m,- in;) fj:] f a,.Py-+(cos 0:). (24) 
/‘=C 

When Eq. (24) is put into Eq. (18) the exponential is eliminated, so 4: can be set to 
zero. The real part of the expansion coefficients reduce to 

x C(ly’J; mj-mj’, rni, mj) C(lj4 0, mj, mj) 

x {T~(vlj’Z’IvjZ)cos[(Z-l’+ l)rc/2]- T{(v’j’l’Ivjl)sin[(Z-I’+ l)n/2]) 

Pat 

and the imaginary part is given by 

a,i=nW(-l)j+j’+(’ -f y (2Z+ l)l’2(- l)‘-2J 
J=O /= lJ- jl 

x C(llj’J; mj - mjl, mj, mj) C(ljJ; 0, mj, mj) 

x (TJ,(v~‘l’/vjZ)sin[(1-Z’+1)n/2~+T~(v’j’P’~vjf)cos[(1-I’i1)~/2~). 

(25b) 

2. The Clebsch-Gordan Method 
The Clebsch-Gordan method is derived from the scattering amplitude method 

substituting the scattering amplitude, Eq. (19), into the state-to-state di~~rent~al 
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cross section, Eq. (18). For this method the incident particle is restricted to the +z 
axis so M=mj. By using the coupling rule for two spherical harmonics, e.g., 
Rose [7, Eq. (4.32)], the two spherical harmonics can be reduced to one spherical 
harmonic. Since the two original spherical harmonics were complex conjugates, the 
resultant one is of the form Y,, O. The spherical harmonic is then written in terms of 
a normalized Legendre polynomial yL. Gathering all the prefactors of PL into an 
expansion coefficient gives 

I(v’j’mi+vjrnjIQk)=k;2 f AL9$(cos0:). 
L=O 

(26) 

In practice, the co must be replaced by 2(5,,, + j’) in the summation over L. The 
expansion coeflicients are complex numbers which have the real part given by 

Jmax + i ’ Jmax +i’ 
ALR= (-1)“J-“~(2n)-’ 1 1 [a,;R~l;R+~,;,~,;,l 

i; =o i;=o 
x (21; + 1)(2Zi+ 1) 1’2 
L 2(2L+l) 1 C(l~,l~,L;O,O,O)C(l~,l~,L;mj-ml,-mj+mi',O) 

(274 

and the imaginary part 

A,, = (- lp-“42n)-’ c 1 [a,;,a,;R -al;pl;,] 
I; =o /;=o 

(21; + 1)(21; + 1) 1’2 
2(2L+ 1) 1 

C(l;,l;, L;O,O,O)C(l;,I;, L;mj-ml,--mj+mj’,O), 

W’b) 

where truncation of the J summation is assumed and the triangle rules are used to 
establish the limits on the other summations. The incident particle is restricted to 
the z-axis, so a,; and a,; are given by Eq. (25). Since the cross section must be real, 
A,, must sum to zero and therefore is not computed. 

B. The Degeneracy Averaged DifSerential Cross Section 

The degeneracy averaged differential cross section is defined by summing the 
state-to-state differential cross section over rnj and averaging over mj to get 

-J- i 5 Z(v’j’mj+- vjmjIQh). r(v”c v"52)=2j+ I”,= -j + ~j, (28) 

Four methods for computing the degeneracy averaged differential cross section 
are included in the code. The scattering amplitude method directly carries out 
Eq. (28). In the Clebsch-Gordan method the summation and the average are 
carried out on the expansion coefficients of the Clebsch-Gordan method for the 
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state-to-state differential cross section. The Z-function method reduces Eq. (28) to a 
simple looking expression of two t” elements times two Z-coefficients as given by 

t and Biedenharn [9]. The momentum transfer method uses the rnorne~t~~ 
sfer formalism of Fano and Dill [lo] as applied by Chandra [ 113, where 

constant angular momentum transfers are dealt with instead of constant total 
angular momentum. 

1. The Scattering Amplitude Method 

The state-to-state differential cross sections computed by the scattering amplitu 
method are directly summed by Eq. (28) in this method. As shown later, this is the 
fastest way to compute the degeneracy averaged differential cross section for large 
values of J,,,. 

2. The Clebsch-Gordan Method 

In this method the required summations are carried out directly on the ex~a~§io~ 
coefftcients of the Clebsch-Gordan method of the state-to-state differential cross 
section. Substituting Eq. (26) into Eq. (28) gives 

I(v~‘+vj~Q~)= &k,q2 f B,$(cos 8:), 
L=O 

where 

B,= @ i A,,. UQ: 
ml= -j m;= -j’ 

Since AL, is zero only ALR, as given in Eq. (27a), must be summed over and is 8 
real number, not complex. In practice the sum over L must be trunc at 
~(Jm,, t-j’). 

3. The Z-Function Method 

The Z-function method is given by Blatt and Biedenharn [9]. The derivation 
begins by writing the degeneracy averaged differential cross section out in its 
entirety 

I(vlj’+ q/Q;) 

~C(jl,J,;m~Om,)C(j’l;J~;m~,m,-m~:m~)C(jl,J,;m~Om~) 

x~(j’l~J,;m~,mj-m~,mj)C(l~I~L;000)C(I~I~k;m~-m~,~~-mj,O) 

x TJl(v’j’l’, / vjl,) TJ2*(v’j’l; 1 vjl,) (31) 
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Equation (31) comes from letting 8, = 0 in Eq. (20) and substituting the result into 
Eq. (27) (without separating the real and imaginary parts). Then Eq. (27) is put 
into Eq. (26) which is substituted into Eq. (28). Five of the Clebsch-Gordan coef- 
ficients in Eq. (31) depend on mj, rni, or both. Collecting the three ClebschGordan 
coefficients that depend on rni allows the use of Rose [7, Eq. (6.5b)] 

C C(abe; c@, CI + /?) C( d e c;cc+p,s,cr+8-t6)C(bdf;;P6,B+6) 
P 

= [(2e+ 1)(2f+ l)]““W(abcd;ef) C(afc;a,p+6, a+/?+S), (32) 

where W(abcd; ef) is a Racah W-coefficient [ 121. Grouping the resultant Clebsch- 
Gordan coefficient with the two Clebsch-Gordan coefficients in Eq. (31) that 
depend only on mj allows Eq. (32) to be used again. The result is that a double sum 
over five Clebsch-Gordan coeffkients has been reduced to two Racah 
W-coefficients times two Clebsch-Gordan coefficients. The expression can be 
further simplified by using the Racah Z-coefficient [12] which is given by 

Z(abcd; ef) = i.f-atC[(2a + 1)(2b + 1)(2c + 1)(2d+ l)]“*C(ucf; 000) W(ubcd; ef) 

(33) 

and is zero unless a + c + f is even. 
The degeneracy averaged differential cross section is now given by 

I(w-!!IQb)=4(2j+ l)k:jL=, (-l)“-’ f b,L!qcos e;), (34) 

where the expansion coefficient b, is 

x TJ1(v’j’Z; 1 vjl,) TJ**(v’j’l; 1 vjl,). (35) 

The imaginary part of b, must sum to zero so that the cross section is real. The 
sums over the total angular momentum J1 and J2 are truncated at some J,,,. The 
triangle rules then determine the limits on the summations 

O,<J,<J,,,,,, O<L,<2J,,, 

IJ,-Ll <Jz<MIN(Jm,,, J1 +L) 

MAX((J,-jl, IL-Z,l)dZ,dMIN(J,+j,L+Z2) (36) 

MAX(IJ,-j’l, IL-Z;l)<Z;<MIN(J,+j’,L+Z;) 

IJz-jl dZ,<J,+j, IJz-j’l <Z;<J,+j’. 
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Also note that the I, and 2’, summations must enforce I, + I, + L = even and 
1; + 1; + L = even, respectively. Further reductions in the summations can be ma 
by using parity decoupling. 

4. The Momentum Transfer Method 

In the momentum transfer method instead of summing over constant total 
angular momentum J, the sums are over constant momentum transfers I, as 
proposed by Fano and Dill [lo]. The procedure that is used is taken from 
Chandra [ 111. The momentum transfer I, corresponds to the angular momentum 
that is transferred between the orbital angular momentum of the structureless 
particle and the rotational angular momentum of the diatomic molecule. 

The scattering amplitude in terms of the momentum transfer is derived from 
Eq. (17), although the sum over A4 is retained by not applying the Dirac delta 
function. First, change the Clebsch-Gordan coefficients into Wigner 3 -j coef- 
ficients using the procedure in Brink and Satchler [ 13, p. 1361. Then use the 
relation 

j IJ I’ j’ J 
-mj 0 A4 rn; ml -M 

J+/,++“;(2~,+ 1) 

(37) 

from Rotenberg et al. [ 14, Eq. (2.19)] to change the constant total angular momen- 
tum to the momentum transfer coupling scheme where (: t I;) is a Wigner 6 -j 
coefficient. The 6 -j coefficient, also used to compute the Racah IV-coefficient of 
the previous section, and the 3 -j coefficient are made by the algorithm of &swell 
and Maximon [lS]. The momentum transfer transition matrix is defined as 

Fi-li(v’j’t’ / vjl) = f, (- 1)‘(2J+ 1) {{, j; :[ TJ(v’j’l’\ vj!). (38) 
J=O 

The scattering amplitude can now be written as 

f (vlj’mi t vjmj 1 .C2;) 

=)+~~i’p”X1’2(21+ l)“‘CC (2/,+ I)(-l)j+j’-m;+m; 

x i 

(1 w, 

( 
j (39) 

J 
lf )( 1 ” If ) P((j’l’,vji) Y,,,;(qJ. 

-Wlj rn,! 0 rn; -m,, 

Notice that due to the 3 - j coefficients the summations over rn; and m,, collapse to 
a single term. 
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To get the cross section, put Eq. (39) into the state-to-state cross section, 
Eq. (18), then carry out the degeneracy averaged sum and average, Eq. (28). As was 
done previously, the two spherical harmonics can be reduced to one spherical har- 
monic which can then be expressed as a Legendre polynomial. The degeneracy 
averaged cross section is now written as 

I(vlj’ +- vjl a;) = 
(-l)“-’ 00 

c BL9gCOS 8;). 
4(2j+ 1) ej,=, 

(40) 

The expansion coefhcient is given by 

Z%‘,=(-l)L(2L+ 1)X (-1)‘(21,+ 1)X (2l,+ l)l’2 
11 4 

x(21; + 1)J/2 1 illpI;-l2+1; 
r; 

s’qvyz; 1 vjl,) sqvyz; 1 vjl*), (41) 

where three 3 -j coefficients have been contracted into a 6 - j coeffkient times one 
3 - j coefficient. The imaginary part of Eq. (41) must sum to zero and the real part 
is 

B’,,=(-1)L(2L+ 1)X (-1)‘(21,+ 1)X (21, + l)l’2 
11 11 

xc (21, + l)l’2 
12 

(b: i i) I, 
c (21; + l)“* 1 

/; 

x {cos[(l1-l;-lz+l;)~/2][~~(v’j’l;~v~l,)~~(v’j’l;~v~l2) 

+~~(vlj’l~~vjl,)~~(v’j’l~~vj12)] +sin[(ll--l;-12+l;)7c/2] 

x [si(vlj’l; 1 vjl,) s;(vlj’l;) vjl,) - q+yz; I vjl,) s4(v’j’l; I I$,)]}. (42) 

The limits on the summations are established by the Wigner coefficients in Eq. (42) 
and by the limits on the 7”. The resulting limits are 

0 d L d 2[J,,, + MIN(j, j’)] 
Ij-j’l <l,<j+j’, 061, <J,,,+j 

IL-Z,1 dz,,<(L+I,,J,,,+j) 
Iz,-I,ldl;d(I,+1,,J,,,+j’) 

MAXCIL-Z;I, lZ,-411 <l;<MIN[L+Z;, l,+l,,J,,,+j’]. 

A further constraint is that 1, + 1, + L = even and 1; + 1; + L = even. 

(43) 
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C. Total Differential Cross Section 

The total differential cross section is the degeneracy averaged cross section 
summed over the final rotational and vibrational quantum nu 

he total differential cross section has been calculated from the scattering 
amplitude, the Clebsch-Gordan, and the Z-function methods of the degeneracy 
averaged differential cross section. 

I. The Scattering Amplitude Method 

To make the total differential cross section, Eq. (44) is directly carried out on the 
degeneracy averaged differential cross sections made by the scattering arn~~~t~de 
method. 

2. The Clebsch-Gordan Method 

The Clebsch-Gordan method for the total differential cross section sums the 
expansion coefficients in Eq. (29). The cross section is given by 

where the expansion coefficient is given by Eq. (30). In practice, the sum over L is 
truncated at the minimum of 2(J,,, t-j) or 2(JmaX c j’) and the sum over j’ only 
goes over open channels. 

3. The Z-Function Method 

The cross section for the Z-function method is given by 

where b, is given by Eq. (35) and is real. The sum over j’ only goes over t 
channels while the sum over L goes from 0 to the inimum of 2(J,,, 
2~Jmax + j’). 

en 
or 

D. The State-to-State Integral Cross Section 

The state-to-state integral cross section is defined as the integral over t 
outgoing angles of the state-to-state differential cross section 

I(v’j’mi + vjmil G?;) d((cos 8:) dq5:. 
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This cross section can be computed using either the scattering amplitude or the 
Clebsch-Gordan method for the state-to-state differential cross section. 

1. The Scattering Amplitude Method 
For the scattering amplitude method Eq. (19) is put into Eq. (18), which is then 

substituted into Eq. (47). Using the orthogonality of spherical harmonics, such as 
Arfken [ 16, Eq. (12.150)], the cross section reduces to 

Q(v’j’m,l t vjmj) = kG2 c 1 a,(aF, 
M I’ 

(48) 

where the expansion coefficients are given by Eq. (20). In practice the summation 
over I’ must be truncated at J,,, + j’. If the incoming structureless particle is 
traveling in the + z direction, then the sum over M reduces to one term, M = mj, 
otherwise - Jmax < M < J,,,,, . 

2. The Clebsch-Gordan Method 

If Eq. (26) is put into Eq. (47), then the orthogonality of the Legendre 
polynomials can be used to reduce the integrals. To do so, write the integral cross 
section as 

Q(v’j’m~cvjmi)=~,/~l P,( cos 0;) f A,P’,(cos 0;) d(cos O:), 
VJ L=O 

(49) 

where P,(cos 0:) = 1 is an unnormalized Legendre polynomial. Upon carrying out 
the integral the state-to-state integral cross section is found to be 

Q(v’j’m;+vjm,)=&$,A,,, 
VJ 

(50) 

where the expansion coefficient is given by Eq. (27a). 

E. The Degeneracy Averaged Integral Cross Section 

The degeneracy averaged integral cross section is defined as the integral over all 
outgoing angles of the degeneracy averaged differential cross section 

Q(v'j' c vj) = + vj 1 Qh) d(cos 13:) d@. (51) 

The scattering amplitude, ClebschhGordan, and Z-function methods for the 
degeneracy averaged differential cross section will be used to calculate the integral 
cross section. 
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1. The Scattering Amplitude Method 

In this method, substitute Eq. (28) into Eq. (51), then take the integrals inside t 
summations so that Eq. (47) can be carried out. The results is 

Q(v’j’ + vj) =&c 1 Q(v’j’m,! t vjmj), (52) 
ml m,’ 

where the scattering amplitude method is used to make the state-to-state integral 
cross section. 

2. The Clebsch-Gordan Method 

For the Clebsch-Gordan method, insert Eq. (29) into Eq. (51), then use t 
orthogonality of Legendre polynomials to carry out the integrals. The integration 
reduces the summation to one term, L = 0. The degeneracy averaged integral cross 
section is given by 

Q(v’j’ t vj) = ___ ,;$, kG2Bo, 

where B, is given by Eq. (30). 

3. The Z-Function Method 

The Z-function method is completely analogous to the Clebsch-Gordan method 
Substitute Eq. (34) into Eq. (51), then carry out the integrations using the 
orthogonality of Legendre polynomials. The degeneracy averaged integral cross 
section is just 

where b, is given by Eq. (35). 

IV. RESULTS 

Testing was done using a rigid rotor model for Ne + IKD. This model tests all of 
the rotational coupling but allows the problem to be simplified since it has no 
vibrational inelastic scattering. The potential used is the Ne + D2 of Andres ez ~1. 
[ 171 with the coordinates shifted to the correct center-of-mass for Ne + II 
potential is a truncated Legendre expansion, 

vr, Y) = V,(r) + V2(r) P,(cos “u’), (55) 

where Y is the distance from the diatom center-of-mass to the atom and y is the 
angle between r and the molecule. The coefficients have the form 

I’j.(r)=Aj,exp(-Bj.r)-(C~r-6+C~r--8+ Cj,Or-i’) F(r), (%I 
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TABLE I 

Parameters for the Potential Expansion Coefficients for Ne + D, 
from Andres er a/.ti61. Equations (55) through (57) Give 

the Expansion That Is Used 

Parameter 1=0 A=2 

A, 890 eV 360 eV 

Bi 3.9 A-' 4.ok' 
Cp' 5.06 eVA6 0.4756 eVA6 
Cj8’ 21.54eVW' 6.0312 eVA8 

C”W i 113.72 eVA” 31.842 eVAi 
rd 2.063 .h 

0; bad) 

FIG. 1. Differential cross sections for Ne + HD at a total energy of 31.5 meV. The solid curve is the 
state-to-state elastic differential cross section I(010 + 010 1 S:, 0), while the dashed curve is the total 
differential cross section Z(O1 I&, 0). 
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where 

exp[ - (2.29rJr - l)“], r < 2.29r,, 
Y 3 2.29r,. 

Values used for the coefficients are given in Table I. To use the above potentiaI for 
Ne + HD, Y and y must be measured from the center-of-mass of the diato 
distance between the geometric center and the center-of-mass of the 
6 = 0.12456.&. If rg and yg are measured from the geometric center, then the center- 
of-mass quantities are given by 

and 

r,. = (ri + d2 + 2r, 6 cos yg)l12 (58) 

cos yc = (rf + d2 - rz)/2r, S. (591 

The masses used are those of McLenithan [18], the isotope mass minus an elec- 
tronic mass: mNe = 19.9869547 amu, mH = 1.00727661 amu, m, = 2.01355364 amu. 
The total energy, E, is 31.5 meV. The ground state energy of the diatom, sOO, is 
taken as zero energy. 

Coupled-channel T-matrices were found using the logarithmic derivative [19], 
part of the VIVAS code [20]. In VIVAS the rotational basis used to provide con- 
vergence was j,,,=4 for OGJ64, j,,,=3 for 5<J<25, j,,,=2 for 26<963 

TABLE II 

State-to-State and Degeneracy Averaged Integral Cross Sections for Ne -k HD 
for a Total Energy of 31.5 meV 

j’m’ +- J’P,‘, 

Q(Oj’m’ + Ojm) 

(A*) J”d t jm 

Q(Qj'm' + Ojm) 

(A*) 

0 oto 0 
l-l+-0 0 
1 oco 0 
1 14-O 0 
0 0+1-l 
1 -1tl -1 
1 O-1 -1 
1 ItI -1 

72.89 0 0+-l 0 3.719 
0.9563 1 -ICI 0 0.2924 
3.122 1 0+-l 0 89.81 
0.9563 1 1-l 0 0.2924 
2.023 0 o-1 1 2.023 

92.54 1-l-l 1 0.1964 
0.2586 1 o-1 1 0.2586 
0.1964 1 1-l 1 92.54 

QK!!' + W 
j'+-j (W2) j t J’ 

0+-o 72.89 0-1 2.588 
ItO 5.034 l-1 92.13 

581/78/l-3 
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FIG. 2. Differential cross section for Ne + HD at a total energy of 31.5 meV. The solid curve is the 
state-to-state differential cross section I(011 t 01~ 118:, 0), while the dashed curve is the degeneracy 
averaged differential cross section 1(01 + 00 1 S:, 0). The only reason these two plots are together is to 
conserve space. 

TABLE III 

CPU Times on a VAX 11/780 to Compute the Cross Sections 
for Ne + HD at 31.5 meV with J,,, = 70. 

Cross 
section 

Scattering 
amplitude 

(s) 
Clebsch-Gordan 

(s) 

Momentum 
transfer 

(s) 

Z-function 
(s) 

SSD 96.0 4920.0 - - 

DAD 5.4 1188.0 12744.0 84492.0 
TD 3.0 27.6 - 33.0 
SSI 0.2 0.14 - 

DA1 0.05 0.05 0.05 

Note. Each column corresponds to one method and each row is one type of cross section. The times 
are how long it took, in seconds, to compute a type of cross section, assuming that the previous types 
have already been computed. Times to compute the T-matrices are not included. Cross sections that are 
not computed by a method are denoted by -. 
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and j,,, = 1 for 53 40. A J,,, = 70 was used for all the results given in this section, 
although J,,, = 110 has been tried for some state-to-state differential cross sections. 

Results for the above potential are now presented which allow comparison to the 
results of Buck et al. [21], McLenithan and Secrest [22], and Fitz et al. [23]. 
Table II shows the state-to-state and degeneracy averaged integral cross sections 
which are within 0.16% of McLenithan and Secrest, Table X [22]. 

For E= 31.5 meV, Ne + HD has two open rotational channels, allowing the code 
to compute 22 differential cross sections. Six of these cross sections are plotted in 
Figs. 1-3, allowing comparison with previous results. The plots match the results of 
McLenithan and Secrest [22] and Buck et al. [21]. Further, the duplicate metho 
are indistinguishable within the precision of the machine. 

The oscillations in the range 7c/2 < 8: < 7~ in Fig. 2 for I(011 c 01 - 1 j 92;) are due 
to the very slow convergence of that cross section. Using J,,, = 110 smooths out 
the curve up to 2.95 rad, but even higher values of J are needed to finish smootbi~g 
out the curve. 

The code has been run on an IBM 3081, a VAX 1 l/780, and a 

O;b-ad) 

FIG. 3. Differential cross sections for Ne i HD a total energy of 31.5 meV. The solid curve is the 
state-to-state differential cross section I(010 +OW I@:, 0), while the dashed curve is the state-to-state 
differential cross section I(01 1 + 000 1 H;, 0). 
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the Ne + HD test problem which requires 1.8 Mbytes of memory. The CPU time 
required to make all the possible cross sections by all methods is 3.4 h on the IBM, 
27.6 h on the VAX, and 36.5 h on the MicroVAX. A more detailed breakdown is 
provided in Table III which shows the CPU time on a VAX 11/780. Table III 
clearly shows that the scattering amplitude method is best. The time each method 
takes to make a cross section is mainly related to how many coupling coefficients 
are needed. For the state-to-state differential cross section, the scattering amplitude 
method needs between 200 to 400 Clebsch-Gordan coefficients; the Clebsch- 
Gordan method needs over 10,000. The momentum transfer and Z-function 
methods should only be used to check the code, at least when a large Jmax is 
required for convergence. These two methods suffer from having to compute very 
large numbers of 3 -j and 6 -j coefficients when J,,,,, is large. 

More general cross sections, such as viscosity coefficients, can be easily added to 
the code. Extensions to reactive scattering are also contemplated. 
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